Knowledge graph embeddings: open challenges and opportunities

Published in Transactions on Graph Data and Knowledge, 2023

While Knowledge Graphs (KGs) have long been used as valuable sources of structured knowledge, in recent years, KG embeddings have become a popular way of deriving numeric vector representations from them, for instance, to support knowledge graph completion and similarity search. This study surveys advances as well as open challenges and opportunities in this area. For instance, the most prominent embedding models focus primarily on structural information. However, there has been notable progress in incorporating further aspects, such as semantics, multi-modal, temporal, and multilingual features. Most embedding techniques are assessed using human-curated benchmark datasets for the task of link prediction, neglecting other important real-world KG applications. Many approaches assume a static knowledge graph and are unable to account for dynamic changes. Additionally, KG embeddings may encode data biases and lack interpretability. Overall, this study provides an overview of promising research avenues to learn improved KG embeddings that can address a more diverse range of use cases.

Recommended citation: R. Biswas, L.A. Kaffee, M. Cochez, S. Dumbrava, T.E. Jendal, et al.. "Knowledge graph embeddings: open challenges and opportunities," in TGDK, 2023
Download Paper